In-situ device integration of large-area patterned organic nanowire arrays for high-performance optical sensors

نویسندگان

  • Yiming Wu
  • Xiujuan Zhang
  • Huanhuan Pan
  • Wei Deng
  • Xiaohong Zhang
  • Xiwei Zhang
  • Jiansheng Jie
چکیده

Single-crystalline organic nanowires (NWs) are important building blocks for future low-cost and efficient nano-optoelectronic devices due to their extraordinary properties. However, it remains a critical challenge to achieve large-scale organic NW array assembly and device integration. Herein, we demonstrate a feasible one-step method for large-area patterned growth of cross-aligned single-crystalline organic NW arrays and their in-situ device integration for optical image sensors. The integrated image sensor circuitry contained a 10 × 10 pixel array in an area of 1.3 × 1.3 mm(2), showing high spatial resolution, excellent stability and reproducibility. More importantly, 100% of the pixels successfully operated at a high response speed and relatively small pixel-to-pixel variation. The high yield and high spatial resolution of the operational pixels, along with the high integration level of the device, clearly demonstrate the great potential of the one-step organic NW array growth and device construction approach for large-scale optoelectronic device integration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.

Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned...

متن کامل

Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry.

We report large-scale integration of nanowires for heterogeneous, multifunctional circuitry that utilizes both the sensory and electronic functionalities of single crystalline nanomaterials. Highly ordered and parallel arrays of optically active CdSe nanowires and high-mobility Ge/Si nanowires are deterministically positioned on substrates, and configured as photodiodes and transistors, respect...

متن کامل

Patterned growth of vertically aligned organic nanowire waveguide arrays.

Vertical nanowire arrays were prepared from an organic dye compound, 1,5-diaminoanthraquinone (DAAQ), on various types of substrates by a facile physical vapor transport method. It was found that the DAAQ grows much faster on the substrates with higher surface energies. Therefore, patterned growth of the nanowire arrays was achieved by modifying the substrate surfaces both geometrically and che...

متن کامل

Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review

The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring ...

متن کامل

Vertical Silicon Nanowire Arrays for Gas Sensing

The goal of this research was to fabricate and characterize vertically aligned silicon nanowire gas sensors. Silicon nanowires are very attractive for gas sensing applications and vertically aligned silicon nanowires are preferred over horizontal nanowires for gas sensing due to the high density of nanowire arrays and the increased nanowire surface area per substrate area. However, the developm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013